Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Type of study
Language
Year range
1.
Rev. Méd. Inst. Mex. Seguro Soc ; 60(2): 211-223, abr. 2022. ilus, tab
Article in Spanish | LILACS | ID: biblio-1367402

ABSTRACT

El retículo endoplásmico es un organelo abundante, dinámico y sensor de energía. Sus abundantes membranas, rugosa y lisa, se encuentran distribuidas en diferentes proporciones dependiendo del linaje y requerimiento celular. Su función es llevar a cabo la síntesis de proteínas y lípidos, y es el almacén principal de Ca2+ intracelular. La sobrecarga calórica y la glucolipotoxicidad generada por dietas hipercalóricas provoca la alteración del retículo endoplásmico, activando la respuesta a proteínas mal plegadas (UPR, Unfolded Protein Response, por sus siglas en inglés) como reacción al estrés celular relacionado con el retículo endoplásmico y cuyo objetivo es restablecer la homeostasis del organelo al disminuir el estrés oxidante, la síntesis de proteínas y la fuga de Ca2+. Sin embargo, durante un estrés crónico, la UPR induce formación de especies reactivas de oxígeno, inflamación y apoptosis, exacerbando el estado del retículo endoplásmico y propagando un efecto nocivo para los demás organelos. Es por ello que el estrés del retículo endoplásmico se ha considerado un inductor del inicio y desarrollo de enfermedades metabólicas, incluido el agravamiento de COVID-19. Hasta el momento, existen pocas estrategias para reestablecer la homeostasis del retículo endoplásmico, las cuales son dirigidas a los sensores que desencadenan la UPR. Por tanto, se justifica con urgencia la identificación de nuevos mecanismos y terapias novedosas relacionadas con mitigar el impacto del estrés del retículo endoplásmico y las complicaciones asociadas.


The endoplasmic reticulum is an abundant, dynamic and energy-sensing organelle. Its abundant membranes, rough and smooth, are distributed in different proportions depending on the cell lineage and requirement. Its function is to carry out protein and lipid synthesis, and it is the main intracellular Ca2+ store. Caloric overload and glycolipotoxicity generated by hypercaloric diets cause alteration of the endoplasmic reticulum, activating the Unfolded Protein Response (UPR) as a reaction to cellular stress related to the endoplasmic reticulum and whose objective is to restore the homeostasis of the organelle by decreasing oxidative stress, protein synthesis and Ca2+ leakage. However, during chronic stress, the UPR induces reactive oxygen species formation, inflammation and apoptosis, exacerbating the state of the endoplasmic reticulum and propagating a deleterious effect on the other organelles. This is why endoplasmic reticulum stress has been considered an inducer of the onset and development of metabolic diseases, including the aggravation of COVID-19. So far, few strategies exist to reestablish endoplasmic reticulum homeostasis, which are targeted to sensors that trigger UPR. Therefore, the identif ication of new mechanisms and novel therapies related to mitigating the impact of endoplasmic reticulum stress and associated complications is urgently warranted.


Subject(s)
Humans , Dietary Carbohydrates/adverse effects , Dietary Fats/adverse effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , COVID-19/complications , Metabolic Diseases/etiology , COVID-19/therapy , Homeostasis
2.
Gac. méd. Méx ; 140(4): 437-447, jul.-ago. 2004. ilus
Article in Spanish | LILACS | ID: lil-632209

ABSTRACT

El propósito de este trabajo es dar a conocer las bases moleculares de la fisiopatología de la diabetes mellitus, con el fin de prevenir la enfermedad o mejorar el tratamiento. La diabetes mellitus es una enfermedad compleja, donde la hiperglucemia crónica provoca complicaciones en distintos órganos. En esta condición aumentan las especies reactivas de oxígeno como resultado de su autooxidacción, por lo que su metabolismo propicia la acumulación de metabolitos como la fructosa, el sorbitol y las triosas fosfato. Éstos últimos generan α-oxoaldehídos reactivos con alta capacidad de unirse a proteínas y generar estrés oxidativo. Además, hay aumento de la síntesis de diacilgliceroles a partir de las triosas fosfato, las cuales activan a la pro teína cinasa C. Por otra parte, la alteración de la proporción normal entre los nucleótidos de niacinamida reducidos con respecto a los oxidados conduce a una baja eficiencia de los sistemas antioxidantes. Finalmente, estas desregulaciones metabólicas causan alteración en la transducción de la señal, en la expresión anormal de genes, además de daño tisular, lo que propicia complicaciones en los pacientes con diabetes.


The knowledge of the molecular basis of diabetes mellitus physiopathology will allow improvements in treatment or prevention of the disease. Diabetes mellitus is a complex disease in which hyperglycemia leads to complications in several organs. In this condition, there is increase in reactive oxygen species (ROS) as a result of glucose autooxidation; its metabolism produces accumulation of metabolites such as fructose, sorbitol, and triose phosphate. The latter generates α oxoaldehydes with high capacity to produce protein glycation and oxidative stress. Moreover, there is an increase in synthesis of diacylglycerol from triose phosphate, which activates protein kinase C. On the other hand, alteration of normal ratio between reduced and oxidized niacinamide nucleotides leads to low efficiency of antioxidative systems. Finally, this metabolic dysregulation causes altered signal transduction, abnormal gene expression, and tissue damage, resulting in development of diabetic complications.


Subject(s)
Humans , Diabetes Mellitus/physiopathology , Hyperglycemia/physiopathology , Molecular Biology , Oxidative Stress/physiology
3.
Gac. méd. Méx ; 137(6): 563-577, nov.-dic. 2001. ilus, tab
Article in Spanish | LILACS | ID: lil-312234

ABSTRACT

En este trabajo, revisaremos las características morfológicas y las fases en que se ha dividido a la apoptosis, así como la importancia de su presencia en algunas enfermedades.La apoptosis y la necrosis son dos mecanismos mediante los cuales puede ocurrir muerte celular. La apoptosis constituye una medida fisiológica de remoción celular, bajo control genético, que se caracteriza por colapso celular, condensación de la cromatina y fragmentación del ácido desoxirribonucleico (ADN). Las células apoptóticas son rápidamente fagocitadas por células vecinas o macrófagos, previniendo así una reacción inflamatoria. La apoptosis se ha propuesto como un evento crítico para mantener la homeostasis tisular que asegura el estado de salud de los organismos.La necrosis implica la ruptura de la membrana e hipoxia, lo que conduce a la disminución en las concentraciones de adenosin trifosfato (ATP), colapso metabólico, edematización y disolución de la célula originando un proceso inflamatorio.


Subject(s)
Apoptosis , Cell Death , Cytochromes c , Mitochondria , Biochemistry , Biodegradation, Environmental , Disease , Research
4.
Gac. méd. Méx ; 137(4): 291-302, jul.-ago. 2001. ilus, tab
Article in Spanish | LILACS | ID: lil-312191

ABSTRACT

La ovulación es un complejo proceso que además de gonadotropinas y esteroides requiere mediadores locales como las citocinas, que también participan en la respuesta inflamatorio. De interés particular es el sistema de la interleucina-1 (IL-1), que al parecer es un intermediario de las gonadotropinas en el proceso ovulatorio. El ovario cuenta con el sistema completo de IL-1 que incluye: ligandos, receptores y el antagonista del receptor. A la IL-1 se le atribuye la inducción de diversos eventos asociados con la ovulación como son: la producción de prostaglandinas, de progesterona, del activador del plasminógeno, glicosaminoglicanos y del aumento preovulatorio de la permeabilidad vascular. El principal efector de la interleucina-1 es el óxido nítrico. El interés de esta revisión es valorar la localización tisular y la acción de la IL-1 en el folículo preovulatorio y su dinámica vascular; así como analizar los mecanismos propuestos para la acción de la IL-1 como modulador de los eventos que llevan a la ruptura folicular.


Subject(s)
Interleukin-1 , Ovulation/physiology , Nitric Oxide/physiology , Follicular Phase , Gonadotropins
SELECTION OF CITATIONS
SEARCH DETAIL